
JLOG2 USER GUIDE May 17, 2013

1

JLog2 User Guide
Version 1.5.1

[A guide on how to use the jlog2 logging package]

Kieran Greer, Email: kierangreer@sourceforge.net.

http://jlog2.sourceforge.net/

JLog2 User Guide V1.5

2

Table of Contents

1 Introduction ...3

2 Main Logger Classes...3

3 Creating a Standard Logger..5

3.1 Static Inheritance ..6

4 Adding your own Custom Logger...7

5 Configuring the Logger...7

5.1 The Configuration Handler..7

5.2 Config File Structure..8

6 Other Utility Classes...9

JLog2 User Guide V1.5

3

1 Introduction

The jlog2 software package is a logging application that allows you to log information

relating to the operation of your software program. The package is written in Java under the

J2SE platform, but is also compatible with the mobile J2ME platform. The mobile version of

Java does not have a default logger and so this package was written and is used by the licas

system [http://licas.sourceforge.net/], for example. The package provides functionality for

logging general information or debugging information, to different sets of streams. It is

based on creating channels to write to, and then allocating these to each logger that is used.

A channel could be anything and so could include something like a text area GUI

component, which would be written to instead of one of the standard outputs. The logging

can be controlled by the logging level and you can also add new custom channels to log to.

The package is provided as a jar file that you include in your library and then use the

relevant classes that you need.

The rest of the document is organised as follows: Section 2 describes some of the most

important classes and methods in the logging package. Section 3 describes how you can

create a logger to use in your code. Section 4 describes how you can write your own logger

to log information to, while section 5 describes how to configure the loggers that are

created. Section 6 provides information on some other useful utility classes.

2 Main Logger Classes

The logger classes are mainly static, meaning that there is only one instance of them. Before

you use the logger however you need to initialise it. This is done by making a single call:

new LoggerHandler();

This only needs to be called once in your whole program and initialises the logger for use by

reading the configuration file and setting the appropriate properties. There are a number of

standard channels that can then be logged to, as specified in the configuration file. Simply

put, the default channels can log to a file, or to the standard output and error streams.

These streams are all stored in a LoggerFactory object. This is an abstract class, where a

default CustomLoggerFactory is used if you do not supply any other one.

Each class then creates its own instance of a Logger class, as described in section 3. The

logger for each class is recognised by the classpath description of the class that it belongs to.

This logger is then provided with references to the standard log channels that relate to it.

JLog2 User Guide V1.5

4

The default configuration provided at the moment is for all loggers to log to only one set of

channels and so it is not possible to provide loggers for different classes with different sets

of channels. An extension to the CustomLoggerFactory would be required to provide

this functionality. So, for example, if you declare default logging to a file and standard

output, all created loggers will log to both of these streams automatically.

Any logging requests should then be done through the static LoggerHandler object.

There are four different methods that can be called to log a message. These are:

public static void logMessage(Logger logger, String level, String

methodName, String message)

This method is called to log a message to the log channels. You need to include the logger to

log to, the level the message is at, the name of the method the message relates to and the

message itself. The message is then written to all of the channels related to the logger and

also allowed by the configuration file for the specified logging level. A description of the

different logging levels is given in section 5.

public static void debugMessage(Logger logger, String level, String

methodName, String message)

This method is called to log a message to the debug channels. You need to include the

logger to log to, the level the message is at, the name of the method the message relates to

and the message itself. The message is then written to the appropriate channels as

described previously.

public static void logError(Logger logger, String level, Exception error)

This method is called to log an error to the log channels. You need to include the logger to

log to, the level the message is at and the error. The message is then written to the

appropriate channels as described previously.

public static void debugError(Logger logger, String level, Exception error)

This method is called to log an error to the debug channels. You need to include the logger

to log to, the level the message is at and the error. The message is then written to the

appropriate channels as described previously.

The information that is logged is a follows:

 Logging date: the time that the message was written. This is determined

automatically.

JLog2 User Guide V1.5

5

 Logging Level: the level of importance for the message. You need to set this yourself

in the log request.

 Logging class: the class that is writing the message. You need to set this yourself

during the logger initialisation.

 Class method: the method in the class that the message relates to. You need to set

this yourself in the log request.

 Log message: the message to log. You set this yourself.

So, for example, the message below was logged on 18 May 2010 at 20:00. It is at the

Message level (see section 5), was logged by the class

org.licas.server.HttpServer, inside the method startRequestThread and

the message is ‘Http Server started at: http://127.0.0.1:8888/’.

Log Message Example:
Tue May 18 20:00:00 BST 2010: Message: org.licas.server.HttpServer:

startRequestThread: Http Server started at: http://127.0.0.1:8888/

3 Creating a Standard Logger

To create a logger you need to declare a static object of type Logger in your class code and

then initialise it through a static constructor. This logger will then be used by all instances of

the class that are created. The logger needs to be initialised with the classname of the class

it belongs to, for identification purposes. For example:

import org.jlog2.*;

public class YourClass

{

/** The logger */

private static Logger logger;

static

{

// get the logger

logger = LoggerHandler.getLogger(YourClass.class.getName());

logger.setDebug(false);

}

}

This would specify the logger for the YourClass class. To also output a debug trace for

the specified file, you not only need to specify the configuration properties, but also set the

debug variable for the logger to true. This means that you can debug only specific classes -

that have the debug variable set to true. If no classes have the debug variable set then there

JLog2 User Guide V1.5

6

will be no debug output trace. To log information, you then send the message to the

LoggerHandler, for example:

LoggerHandler.logMessage(logger, LoggerHandler.INFO, "method", "message");

All logging should be done through a LoggerHandler call, which should also be used to

choose the logging level.

3.1 Static Inheritance

Because the logger is static, there can be a problem if you declare the logger in a base class

and then derive a number of classes from that. For example, if you write a class:

Class YourBaseClass ()

{

protected static Logger logger;

}

And then create two derived classes, in the following order:

Class YourDerivedClass1 () extends YourBaseClass

{

static

{

logger = LoggerHandler.getLogger(YourDerivedClass1.class.getName());

}

}

Class YourDerivedClass2 () extends YourBaseClass

{

static

{

logger = LoggerHandler.getLogger(YourDerivedClass2.class.getName());

}

}

If an error from YourDerivedClass1 is logged, it might be assigned the classname of

YourDerivedClass2, because they have been assigned the same logger. This can be

fixed by declaring the logger in each derived class and not in the base class.

JLog2 User Guide V1.5

7

4 Adding your own Custom Logger

You can also write your own logging channels by extending the LogChannel class and

implementing the abstract methods. For example, you could create a swing TextArea

component and choose to log to that instead of a file. You then need to add the new

channel to the LoggerHandler as a default channel, to allow it to be included with every

logger that is created, for example the following code:

Vector allLogChannels;

JTextArea jTextAreaLog; //swing text area

TextAreaChannel textAreaChannel; //extends LogChannel

new LoggerHandler();

allLogChannels = new Vector();

textAreaChannel = new TextAreaChannel(jTextAreaLog);

allLogChannels.add(textAreaChannel);

LoggerHandler.addDefaultLogChannels(allLogChannels);

LoggerHandler.addDefaultDebugChannels(allLogChannels);

logger = LoggerHandler.getLogger(YourClass.class.toString());

logger.setDebug(true);

Would initialise the logger handler to include the text area channel with every logger that is

created, both for information and debugging, as well as any default ones specified in the

configuration file. The text area can then be written to by implementing the

writeMessage or writeError abstract methods of LogChannel.

5 Configuring the Logger

The logger can be configured by a configuration file. By default, this file should reside in a

folder called config and an example folder and file should have been supplied with the

package that you downloaded. The config folder should be in the same directory as the

executable jar of your program, so that the logger can find it.

5.1 The Configuration Handler

If your mobile or other device, does not allow you to read the directory that the app is

running from, you can use the ConfigHandler to set a different folder path. The default

file name will then be appended to the end of the folder path. For example:

JLog2 User Guide V1.5

8

ConfigHandler.setConfigFolderPath("path to config folder");

This will read the config file from the path ‘path to config folder’ / logger.config.

ConfigHandler.setLogFolderPath(“path to folder to write to”);

This will write logging information to the folder ‘path to config folder’. The log/debug file

names are specified in the config file.

Note: The configuration handler should be called once only, at the very start of your

program, before any static declarations for a new logger. Note that the declarations do not

have to be made in static sections, in particular, not for the Main startup class.

5.2 Config File Structure

The file is a properties file and should be called logger.config. An example of what the

file looks like is shown next, where the declared values are not case sensitive:

log.channels = FO

debug.channels = fe

log.file.path = licas.log

log.file.size = 100000

log.file.backup = 5

log.level = Info

debug.file.path = licas.debug

debug.file.size = 500

debug.file.backup = 1

debug.level = error

The configuration allows the user to specify default channels to log to. These can be

standard output (O), standard error (E), or a file (F). To log to these simply specify the

combination of these letters, for example:

1. To log to a file and standard output the instruction is: log.channels = FO

2. To debug to a file and standard error the instruction is: debug.channels = FE

3. The file.path property defines the name of the file to log to.

Each log file has a maximum size as specified by the file size property. This is the maximum

number of lines allowed in the log file. When this maximum value has been reached, the file

is cleared of all entries and then filled with the new log information until the maximum

value is reached again, etc. For example:

JLog2 User Guide V1.5

9

1. To log to a file with a maximum number of 100000 lines the instruction is: log.file.size =

100000

2. To debug to a file with a maximum number of 10000 lines the instruction is:

debug.file.size = 10000

You can also save earlier versions of the log file that would otherwise be overwritten when

the maximum size is reached. The number of previous files that you keep is declared by the

backup property. Declare the number of backup files to keep as follows:

1. log.file.backup = 5 means to keep 5 earlier versions of the log file. These are always the

most recent earlier versions.

2. debug.file.backup = 1 means to keep one earlier version of the debug file. This is always

the most recent earlier version.

Logging can be declared at different levels representing different levels of importance.

The levels available in order are: All, Info, Warn, Error, Severe, Message. Declare the level

for each logger as follows:

1. To log to a level of info or higher (Info, Warn, Error, Severe): log.level = Info

2. To debug to a level of error or higher (Error, Severe): debug.level = Error

The following additional conditions apply:

1. When specifying the level in the config file, the 'All' level specifies to log everything.

2. When declaring the log level in your code, the LoggerHandler.MESSAGE level

specifies to log the message no matter what level is set in the config file. The 'Message'

level means to always output the message, even if it is not associated with any specific

problem or level, for example.

6 Other Utility Classes

Although not part of a logger, there are some other utility classes that would be useful in a

restricted environment. In J2ME, for example, not all of the String or Collection functionality

is available in the available classes. The logger therefore includes some other basic utility

classes as follows:

 StringHandler: can be used to tokenize a string, perform the replace operation, or test

for containment.

 CollectionHandler: can be used to clone or merge Vector or Hashtable lists, for example.

JLog2 User Guide V1.5

10

 FileLoader: can be used to load data from local or remote files, or parse directories to

return file or folder names, for example.

 UuidHandler: allows the creation of unique ids. An alternative to the Java system version.

